Tel: 01582 704807   |    Email:   |   Signup to our newsletter
  • Measure, analyse, control


    Measure, analyse, control

    The systems we supply are used at all stages in research, development and manufacturing

    Our systems enable you to measure, analyse and control a broad range of properties and characteristics across a wide range of sample types.

Particle Size: An Important Factor in Many Applications

Particle size is the physical property that describes the size of individual particles in a material. It is an important factor in many applications and industries, ranging from pharmaceuticals, cosmetics, and food production to chemical processing and construction. In this blog post, we will dive into the importance of particle size and how it can impact various applications.

What is Particle Size?

Particle size refers to the size of individual particles that make up a material. The size of these particles can vary greatly, from nanometers to millimeters. The most common way to measure particle size is through the use of a particle size analyser.

Importance of Particle Size

Particle size is an important factor in many fields and industries. In the pharmaceutical industry, for example, the size of drug particles can impact their absorption rate by the body. The smaller the particles, the greater the surface area, which leads to faster absorption. In cosmetics, particle size affects the texture and feel of the product. For instance, in sunscreens, smaller particle sizes are used to allow for easier and more even application, while still providing the UV protection.

In food production, particle size plays an important role in texture and taste. For example, in baking, the particle size of flour can impact the final texture of the baked goods. Particle size also affects the solubility and flow of powders, which is important in the chemical industry. The size of particles in paint can affect its appearance and the ease of application.

The Impact of Particle Size on Properties

Not only does particle size affect the properties of a product or material, but it can also be used to control those properties. For example, in the production of catalysts, the size of the particles can affect their reactivity. By controlling the particle size, researchers can tune the catalytic activity of the material. In the development of drug delivery systems, particle size can be used to control release rates and the stability of the particles.


Overall, particle size is a crucial factor to consider in many applications. The size of individual particles can impact the properties and performance of a material or product. By understanding particle size and its effects, researchers and manufacturers can optimize their products and improve their efficiency.